Direkt zum Inhalt

Aufgabe

Formel zur Bestimmung von Wellenlängen mit dem Doppelspalt

Schwierigkeitsgrad: leichte Aufgabe

Hinweis: Hilfen zur Lösung dieser Aufgabe findest du im Grundwissen zum Doppelspalt.

a)
Joachim Herz Stiftung
Abb. 1

Leite mit Hilfe der Skizze kommentiert die Formel \(\Delta s = a \cdot \frac{d}{e}\) für den Doppelspalt her.

b)

Begründe, dass für \(\Delta s = n \cdot \lambda \;;\;n \in \left\{ {0\;;\;1\;;\;2\;;\;...} \right\}\) am Punkt \(\rm{A}\) Intensitätsmaxima und für \(\Delta s = \left( {n - \frac{1}{2}} \right) \cdot \lambda \;;\;n \in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) am Punkt \(\rm{A}\) Intensitätsminima auftreten.

Lösung einblendenLösung verstecken Lösung einblendenLösung verstecken
a)

Im rechtwinkligen Dreieck \({{\rm{S}}_{\rm{1}}}{{\rm{S}}_{\rm{2}}}{\rm{P}}\) gilt
\[{\rm{sin}}\left( \alpha  \right) = \frac{{\Delta s}}{d} \quad (1)\]
Im rechtwinkligen Dreieck \({\rm{MOA}}\) gilt \[{\rm{tan}}\left( \alpha  \right) = \frac{a}{e} \quad(2)\]
Da für kleine Winkelweiten \(\alpha\) näherungsweise \({\rm{sin}}\left( \alpha  \right) \approx {\rm{tan}}\left( \alpha  \right)\) gilt, erhält man aus \((1)\) und \((2)\)
\[\frac{{\Delta s}}{d} = \frac{a}{e} \Leftrightarrow \Delta s = a \cdot \frac{d}{e}\]

b)

Für \(\Delta s = n \cdot \lambda \;;\;n \in \left\{ {0\;;\;1\;;\;2\;;\;...} \right\}\) treffen am Punkt \(\rm{A}\) stets Wellenberg auf Wellenberg und Wellental auf Wellental, es kommt zu konstruktiver Interferenz und damit Intensitätsmaxima.

Für \(\Delta s = \left( {n - \frac{1}{2}} \right) \cdot \lambda \;;\;n \in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) treffen am Punkt \(\rm{A}\) stets Wellenberg auf Wellental und Wellental auf Wellenberg, es kommt zu destruktiver Interferenz und damit  Intensitätsminima.

Grundwissen zu dieser Aufgabe

Optik

Beugung und Interferenz