Direkt zum Inhalt

Grundwissen

Drittes KEPLERsches Gesetz

Aufgaben Aufgaben
Drittes KEPLERsches Gesetz

Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen\[\frac{{T_1^2}}{{T_2^2}} = \frac{{a_1^3}}{{a_2^3}}\]Anders formuliert: Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert\[\frac{{T_1^2}}{{a_1^3}} = \frac{{T_2^2}}{{a_2^3}} = ... = C\]Die Konstante \(C\), die für jedes Zentralgestirn einen anderen Wert hat, bezeichnet man als KEPLER-Konstante.

Abb. 1 Drittes KEPLERsches Gesetz: Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen

Das dritte KEPLERsche Gesetz vergleicht die Umlaufzeiten verschiedener Planeten um das gleiche Zentralgestirn Sonne. Planeten mit größerer Sonnenferne brauchen wesentlich länger für einen Umlauf als nahe Planeten. So benötigt etwa der sonnennächste Planet Merkur nur 88 Tage für einen Umlauf, wohingegen der sonnenferne Neptun für einen Umlauf 165 Jahre benötigt.

Das dritte Gesetz von KEPLER ist natürlich auch anwendbar, wenn ein anderes Zentralgestirn als die Sonne ausgewählt wird (z.B. der Planet Jupiter für alle Jupitermonde). Es ist allerdings zu beachten, dass die in die Formel eingesetzten Daten sich immer auf das gleiche Zentralgestirn beziehen müssen.

Für das Zentralgestirn Sonne gilt \[C_{\rm{Sonne}} = 2{,}97 \cdot {10^{ - 19}}\rm{\frac{{{s^2}}}{{{m^3}}}}\]für das Zentralgestirn Jupiter gilt\[C_{\rm{Jupiter}} = 3{,}1 \cdot {10^{ -16}}\rm{\frac{{{s^2}}}{{{m^3}}}}\]und für das Zentralgestirn Erde\[C_{\rm{Erde}} = 9{,}83 \cdot {10^{ -14}}\rm{\frac{{{s^2}}}{{{m^3}}}}\]

Die KEPLERschen Gesetze gehen davon aus, dass die Masse des Zentralkörpers deutlich größer ist als die Masse der umlaufenden Körper. Ist dies nicht der Fall, müssen die Gesetzmäßigkeiten abgeändert werden.

Das dritte Gesetz von KEPLER lieferte den Schlüssel für Aussagen über die Ausdehnung unseres Planetensystems. Während man die Umlaufzeiten der Planeten relativ einfach messen konnte, war die Angabe der absoluten Länge einer großen Halbachse im System schwierig. Aber erst mit Kenntnis der Umlaufzeiten und der Länge der großen Halbachse eines Planeten können die Halbachsen anderer Planeten durch das 3. KEPLERsche Gesetz bestimmt werden.