Ausblick
Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.
-
Stoßdämpfer
-
Wiegen im Weltall
-
Flüssigkeitspendel
•Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}} \cdot t} \right)\).
•Die Schwingungsdauer \(T = 2\pi \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.
-
Kettenpendel
•Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}} \cdot t} \right)\).
•Die Schwingungsdauer \(T = 2\pi \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.
-
Doppeltes Federpendel
- Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
- Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).
-
Federpendel ungedämpft (Theorie)
-
Blattfederpendel stehend
•Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).
•Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).
-
Federpendel ungedämpft (Modellbildung)
-
Blattfederpendel hängend
•Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).
•Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).
-
Schwingende Boje
•Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}} \cdot t} \right)\]
•Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).
-
Skater in der Halfpipe
•Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}} \cdot t} \right)\).
•Die Schwingungsdauer \(T = 2\pi \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.
-
Federpendel gedämpft (Theorie)
-
Kräfte beim Fadenpendel
- Die rücktreibende Kraft beim Fadenpendel kann auch über die Addition verschiedener Kräfte erklärt werden.
- Man kann die Kräfte sowohl aus einem ruhenden als auch aus einem mitbewegtem Bezugssystem betrachten.
- Dabei spielen neben der Gewichts- und der Fadenkraft auch noch die Zentripetal- bzw. die Zentrifugalkraft eine Rolle.
-
Federpendel gedämpft (Modellbildung)
-
Feder-Schwere-Pendel ungedämpft (Modellbildung)
-
Feder-Schwere-Pendel gedämpft (Modellbildung)
-
Hemmungspendel (Galilei-Pendel)
- Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
- Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
- Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.