Direkt zum Inhalt

Ausblick

Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.

  • Stoßdämpfer

  • Wiegen im Weltall

  • Flüssigkeitspendel

    Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

    Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

  • Kettenpendel

    Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

    Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

  • Doppeltes Federpendel

    • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
    • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).
  • Federpendel ungedämpft (Theorie)

  • Blattfederpendel stehend

    Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

    Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

  • Federpendel ungedämpft (Modellbildung)

  • Blattfederpendel hängend

    Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

    Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

  • Skater in der Halfpipe

    Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

    Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

  • Schwingende Boje

    Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

    Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

  • Federpendel gedämpft (Theorie)

  • Kräfte beim Fadenpendel

    • Die rücktreibende Kraft beim Fadenpendel kann auch über die Addition verschiedener Kräfte erklärt werden.
    • Man kann die Kräfte sowohl aus einem ruhenden als auch aus einem mitbewegtem Bezugssystem betrachten.
    • Dabei spielen neben der Gewichts- und der Fadenkraft auch noch die Zentripetal- bzw. die Zentrifugalkraft eine Rolle.
  • Federpendel gedämpft (Modellbildung)

  • Feder-Schwere-Pendel ungedämpft (Modellbildung)

  • Feder-Schwere-Pendel gedämpft (Modellbildung)

  • Hemmungspendel (Galilei-Pendel)

    • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
    • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
    • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.
  • Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

    • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
    • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)
  • Federpendel stark gedämpft - Kriechfall (Theorie)

    • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
    • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)