Direkt zum Inhalt

Aufgabe

Serienschaltung von Federn

Schwierigkeitsgrad: schwere Aufgabe

Joachim Herz Stiftung
Abb. 1 Skizze zur Aufgabe

Zwei Federn von je \(20\rm{cm}\) Länge werden jeweils mit \(6,0\rm{N}\) belastet. Die erste Feder ist dann \(26\rm{cm}\), die zweite \(30\rm{cm}\) lang.

a)

Berechne die Federkonstanten \(D_1\) und \(D_2\) der beiden Federn.

b)

Berechne die Längen der Federn, wenn sie jeweils mit \(8,0\rm{N}\) belastet werden.

c)

Die Federn werden aneinander gehängt und mit einem \(6,0\rm{N}\)-Stück belastet. Bestimme die Gesamtlänge beider Federn.

Lösung einblendenLösung verstecken Lösung einblendenLösung verstecken
a)

Nach dem Gesetz von HOOKE gilt\[F = D \cdot s \Leftrightarrow D = \frac{F}{s}\]Nun ergibt sich für die beiden Federn \({s_1} = \Delta {x_1} = 26{\rm{cm}} - 20{\rm{cm}} = 6{\rm{cm}} = 0,06{\rm{m}}\) und analog \({s_2}=10{\rm{cm}} = 0,10{\rm{m}}\) und damit\[{D_1} = \frac{{6,0{\rm{N}}}}{{0,06{\rm{m}}}} = 100\frac{{\rm{N}}}{{\rm{m}}}\]\[{D_2} = \frac{{6,0{\rm{N}}}}{{0,10{\rm{m}}}} = 60\frac{{\rm{N}}}{{\rm{m}}}\]

b)

Nach dem Gesetz von HOOKE gilt\[F = D \cdot s \Leftrightarrow s = \frac{F}{D}\]Nun ergibt sich für die beiden Federn\[{s_1} = \frac{F}{{{D_1}}} \Rightarrow {s_1} = \frac{{8,0{\rm{N}}}}{{100\frac{{\rm{N}}}{{\rm{m}}}}} = 0,08{\rm{m}} = 8{\rm{cm}}\]\[{s_2} = \frac{F}{{{D_2}}} \Rightarrow {s_1} = \frac{{8,0{\rm{N}}}}{{60\frac{{\rm{N}}}{{\rm{m}}}}} = 0,13{\rm{m}} = 13{\rm{cm}}\]

c)

Wenn man von der Gewichtskraft der unten hängenden Feder absieht wirkt auf beide Federn jeweils die Kraft von \(6,0\rm{N}\). Somit dehnen sich die beiden Federn genau so wie im Aufgabentext angegeben aus. Damit ist die Gesamtlänge der belasteten Kombination\[l = 26{\rm{cm}} + 30{\rm{cm}} = 56{\rm{cm}}\]

Grundwissen zu dieser Aufgabe

Mechanik

Kraft und das Gesetz von HOOKE